Robust harmonic field based tooth segmentation in real-life noisy scanned mesh

Jaedong Hwang*, Sanghyeok Park*, Seokjin Lee*, and Yeong-Gil Shin {jd730, pps987, iwill231, yshin}@snu.ac.kr Seoul National University, Korea

INTRODUCTION

- Dental Mesh Segmentation allows dentists to simulate moving teeth without making several plaster models.
- Harmonic field based models [2, 3, 5] improve performance of dental mesh segmentation compared to curvature based models [1, 4], but it is still vulnerable to real noisy meshes.
- We propose a noise robust algorithm that can handle artifacts in **real meshes.**

METHODS

Harmonic Field based model

$$A\Phi = b: \quad A = \begin{bmatrix} L \\ C \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ b' \end{bmatrix}$$

where

 $L\,$ is Laplacian matrix of which weight [3] is

$$w_{ij} = \frac{\gamma_{ij}(\cot\alpha_{ij} + \cot\beta_{ij})}{2}$$

 $C \text{ is constraint matrix } c_{ij} = \begin{cases} \omega, & \text{for } i = j \text{ and } i \in P, \\ 0, & \text{otherwise,} \end{cases}$

P is set of feature points.

b' is boundary condition vector proposed by [3]

Additional Ground (AG)

Some additional grounds are added to revise harmonic field affected by noise meshes and shapes.

Flipping Dirichlet boundary

condition (FD)

Use two Dirichlet boundary conditions giving weights to different groups of input points.

Convex Segmentation (CS)

 $Seg = Seg \cup \left(\bigcup_{i} V_i\right)$

 $V_i = \{v \mid \operatorname{proj}(v) \in \operatorname{convexHull}(\operatorname{proj}(Seg \cap (\bigcup_{i \le i} S_j)))\}$

 ${\cal S}_j$ is a horizontal slice of each tooth indexed from the bottom.

QUALITATIVE RESULT

Fig. 1 Qualitative result of our algorithms on mandible with an abraded tooth, a crown and a hole.

Fig. 2 Qualitative result of our algorithms on mandible with a prepared tooth an isolated molar and craters.

QUANTITATIVE RESULT

Overlap Ratio

Table 1. Overlap ratio (IoU) on four different meshes

Data	baseline	ours
mandible w/ an abraded tooth	0.0000	0.0005
mandible w/ a prepared tooth	0.0000	0.0000
mandible w/ crowns	0.0000	0.0000
maxillary teeth	0.0000	0.0000

- Baseline model does not make any overlaps
- Our model generates negligible overlap on one

meshes due to Convex Segmentation.

Comparison with the baseline

Table 2. Human Evaluation (25 experts) with seven point scale for comparing with the baseline

Data	baseline		ours	
	Avg	Std	Avg	Std
mandible w/ an abraded tooth	3.16	1.40	5.72	0.94
mandible w/ a prepared tooth	3.96	1.43	5.44	1.29
mandible w/ crowns	3.60	0.91	5.00	1.15
maxillary teeth	3.40	1.26	5.40	1.12

 Our model outperforms the baseline model with scores higher than 4 (median of seven point scale).

Results of the baseline model get same or less than 4

*: equal contribution

Fig. 2 Mesh data used for quantitative experiments

ABLATION STUDY

Table 2. Human Evaluation (seven point scale)

Model	Avg	Std
baseline	2.88	1.36
baseline + AG	3.84	1.11
baseline + AG + FD	4.68	0.90
baseline + $AG + FD + CS$	6.20	0.65

 Each introduced algorithm effectively improves the quality of dental mesh segmentation.

CONCLUSIONS

- Proposed algorithms can improve the performance of dental mesh segmentation from the baseline harmonic field based model.
- Our model differentiates well on abraded teeth, prepared teeth, and crowns.
- However, Flipping Dirichlet boundary condition and Convex Segmentation can cause overlap between two or more teeth.

REFERENCES

- Kronfeld, T., Brunner, D., and Brunnett, G., "Snake-based segmentation of teeth from virtual dental casts," Computer-Aided Design and Applications 7(2), 221–233 (2010).
- Li, Z. and Wang, H., "Interactive tooth separation from dental model using segmentation field," PIoS one 11(8), e0161159 (2016).
- Liao, S.-h., Liu, S.-j., Zou, B.-j., Ding, X., Liang, Y., and Huang, J.-h., Automatic tooth segmentation of dental mesh based on harmonic fields," BioMed research international 2015 (2015).
- Wu, K., Chen, L., Li, J., and Zhou, Y., "Tooth segmentation on dental meshes using morphologic skeleton," Computers & Graphics 38, 199–211 (2014).
- Zou, B.-j., Liu, S.-j., Liao, S.-h., Ding, X., and Liang, Y., "Interactive tooth partition of dental mesh base on tooth-target harmonic field," Computers in biology and medicine 56, 132–144 (2015)

