

- backgrounds are difficult
- comparing exemplars of each class.

- analysis of its inherent challenges.
- on Panoptic FPN [2].
- exemplar theory and present its effectiveness. find me

Exemplar-Based Open-Set Panoptic Segmentation Network

Jaedong Hwang^{1*}

Seoung Wug Oh²

¹Seoul National University

(* work done during the internship program at Adobe Research)

• Assumptions for preventing label conflict

- \forall unknown class \subset thing class.
- regions.

Dataset based on COCO [1]

- *n* classes among *thing* classes. **5%:** car, cow, pizza, toilet **10%:** (5%) + *boat, tie, zebra, stop sign*

Joon-Young Lee²

Bohyung Han¹

²Adobe Research

• Parts of *known* objects \neq *unknown* class (e.g., tire in *car*). Unknown classes in training images only appear on void

We construct different splits with different ratio, K of unknow

20%: (10%) + dining table, banana, bicycle, cake, sink, cat, keyboard, bear We remove annotations for *unknown* classes during training.

$$\mathcal{L}_{\text{void}} = \sum_{c \in \mathcal{C}^{\text{Th}}} -\log(1-p_c)$$

Reference

[1] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." In ECCV, 2014. [2] Kirillov, Alexander, et al. "Panoptic feature pyramid networks." In CVPR. 2019.

	Known								Unknown		
Q	SQ	RQ	PQ Th	SQ Th	RQ^{Th}	PQ St	SQ St	RQ St	PQ	SQ	RQ
.7	76.3	46.6	44.8	79.3	54.1	29.2	72.8	37.5	4.0	71.1	5.7
.2	76.3	45.9	43.9	79.0	53.1	29.1	73.0	37.3	3.7	71.8	5.2
.5	75.9	46.1	45.1	80.6	54.5	28.2	70.2	36.1	7.2	75.3	9.6
.9	76.4	45.5	44.0	80.3	53.3	28.2	71.7	36.0	7.8	73.4	10.7

Known									Unknown		
PQ	SQ	RQ	PQ Th	SQ^{Th}	RQ^{Th}	PQ St	SQ St	RQ St	PQ	SQ	RQ
39.4	77.7	48.4	45.8	80.7	55.4	29.7	73.1	38.0		-	_
37.7	76.7	46.4	44.2	80.4	53.5	28.3	71.3	36.2	10.0	73.8	13.5
88.0	76.9	46.8	44.8	80.5	54.2	28.3	71.9	36.2	23.1	74.7	30.9
86.9	75.4	45.5	43.2	79.0	52.4	28.3	70.4	36.2	8.5	73.2	11.6
87.7	76.8	46.3	44.5	80.6	53.8	28.4	71.8	36.2	17.9	76.8	23.3
86.9	76.4	45.5	44.0	80.3	53.3	28.2	71.7	36.0	7.8	73.4	10.7
87.4	76.2	46.2	45.0	80.3	54.5	28.2	71.2	36.2	11.3	73.8	15.3