

Exemplar-Based Open-Set Panoptic Segmentation Network

Jaedong Hwang Seoul National Univ.

Seoung Wug Oh Adobe Research

Joon-Young Lee Adobe Research

Bohyung Han Seoul National Univ.

• **Closed-set:** In the test dataset, there only exists classes that are learned during training.

Training data

tortoise

horse

dog

Test data

We know these classes!

- **Closed-set:** In the test dataset, there only exists classes that are learned during training.
- **Open-set:** In the test dataset, some classes do not appear during training.

Training data

tortoise

horse

dog

Test data

🙄 Who are they?

- Classes in the open-world can be divided.
 - Known class: class appears during training with labels and testing.
 - Unknown class:
 - Seen Unknown class (Known Unknown class): class appears during training without label and testing.
 - Unseen Unknown class (Unknown Unknown class): class only appears during testing.

• As we gather more images, the number of seen unknown classes rapidly increases.

Semantic Segmentation

Segment all semantic background and instances.

Instance Segmentation

- Segment all instance differentiating each instance (instance id).
- Panoptic Segmentation
 - Segment all semantic background and instances differentiating each instance.

Instance Segmentation

Panoptic Segmentation

• Thing class

• Object (e.g., car, person, motorbike).

• Stuff class

- Semantic background (e.g., sky, road).
- Amortized instances (e.g., *building*, *grass*, *tree*).

• Void class

- Remaining regions where are not associated with thing class and stuff class.
- Evaluation Metrics
 - PQ (Panoptic Quality), SQ (Segmentation Quality), RQ (Recognition Quality)

$$PQ = \underbrace{\frac{\sum_{(p,g)\in TP} IoU(p,g)}{|TP|}}_{\text{segmentation quality (SQ)}} \cdot \underbrace{\frac{|TP|}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}}_{\text{recognition quality (RQ)}}$$

- Open-Set + Panoptic Segmentation
- The model should find and segment not only known class but also unknown class.

Challenges

- Finding unknown instances are difficult than rejecting unknown instances
 - Unknown objects which might have been labeled as background during training.
- Labeling all objects for evaluation is almost impossible.
 - Some objects are composed of several parts.
 - The definition of 'object' varies by each person and it is hard to give one concrete guidance.
- Evaluation
 - Since ground-truths are incomplete PQ and RQ decrease as a model finds unlabeled unknown objects.
 - SQ cannot represent overall panoptic segmentation quality since it only consider true positives.

Assumptions for Tractable OPS

- All unknown classes are thing class.
 - stuff classes are defined as regions (e.g., water) or often ill-posed (e.g., tree).
- Parts of known classes cannot be unknown classes (e.g., head in *person*, tire in *car*)
 - If *tire* exists by itself, it can be an unknown object.
- Unknown class objects only appear void regions in the training data.
 - This is for preventing label conflict between known class and unknown class.

Previous Closed-Set Panoptic Segmentation Frameworks

• Allocate Instance ID after generating Semantic Segmentation.

Motivation

- There is no methods that directly tackle open-set panoptic segmentation.
- However, we can utilize class-agnostic model (e.g., RPN)
- We use **Panoptic FPN** as our baseline employing
 - Class-agnostic regressor.
 - Class-agnostic mask prediction head.
 - Objectness score from RPN.

Kirillov, Alexander, et al. "Panoptic feature pyramid networks." CVPR. 2019.

Baseline (Panoptic FPN)

- We define **void box** of which more than a half of area is on the void regions.
- We have 4 different ways to use **void boxes**.
 - und (Void-background)
 ining (Void-ignorance)
 not assigning as known class (Void-su
 $c \in C^{Th}$

CVPR 2021

Train as a new class (Void-train)

Motivation

- Class-agnostic approach assumes unknown class has similar semantics with known ones.
 - It is hard to find unknown class having different semantics.

Unknown classes

Overview

- We propose exemplar-based open-set panoptic segmentation network (EOPSN).
- In exemplar theory, people categorize new objects by comparing exemplars of each class.
- We first find new unknown class with exemplars by clustering
- Then, we mine additional exemplars by comparing them with object proposals.

Overall Architecture

CVPR 2021

Overall Architecture

• Proposal features are the inputs of last classification layer.

Dataset

- Our open-set panoptic segmentation (OPS) dataset is based on Microsoft MS COCO 2017.
 - 118K training image, 5K validation images (80 thing classes, 53 stuff classes).
- We construct different splits with different ratio, *K* of unknown classes among thing classes.
 - **5%:** car, cow, pizza, toilet
 - **10%:** (5%) + *boat, tie, zebra, stop sign*
 - **20%:** (10%) + *dining table, banana, bicycle, cake, sink, cat, keyboard, bear*
- We remove annotations for unknown classes in the training dataset.

Image

Original annotation

OPS annotation

Performance of Baseline Methods

• Open-set panoptic segmentation results on COCO val set with *K* = 20% of the baselines.

Itilization of void regions	Known										Unknown		
	PQ	SQ	RQ	PQ Th	SQ Th	RQ^{Th}	PQ St	SQ St	RQ St	PQ	SQ	RQ	
Void-background	37.7	76.3	46.6	44.8	79.3	54.1	29.2	72.8	37.5	4.0	71.1	5.7	
Void-ignorance	37.2	76.3	45.9	43.9	79.0	53.1	29.1	73.0	37.3	3.7	71.8	5.2	
Void-suppression	37.5	75.9	46.1	45.1	80.6	54.5	28.2	70.2	36.1	7.2	75.3	9.6	
Void-train	36.9	76.4	45.5	44.0	80.3	53.3	28.2	71.7	36.0	7.8	73.4	10.7	

Comparison with Baseline Method

• Open-set panoptic segmentation results on COCO val set with various splits, K.

K(%)	Model	Known										Unknown		
	WIOUCI	PQ	SQ	RQ	PQ Th	SQ Th	RQ Th	PQ St	SQ St	RQ St	PQ	SQ	RQ	
	Supervised	39.4	77.7	48.4	45.8	80.7	55.4	29.7	73.1	38.0	-	-	-	
5	Baseline (Void-train)	37.7	76.7	46.4	44.2	80.4	53.5	28.3	71.3	36.2	10.0	73.8	13.5	
	EOPSN	38.0	76.9	46.8	44.8	80.5	54.2	28.3	71.9	36.2	23.1	74.7	30.9	
10	Baseline (Void-train)	36.9	75.4	45.5	43.2	79.0	52.4	28.3	70.4	36.2	8.5	73.2	11.6	
	EOPSN	37.7	76.8	46.3	44.5	80.6	53.8	28.4	71.8	36.2	17.9	76.8	23.3	
20	Baseline (Void-train)	36.9	76.4	45.5	44.0	80.3	53.3	28.2	71.7	36.0	7.8	73.4	10.7	
	EOPSN	37.4	76.2	46.2	45.0	80.3	54.5	28.2	71.2	36.2	11.3	73.8	15.3	

Sensitivity Analysis

• Size of input proposals for clustering on COCO val set (*K* = 10%)

Proposal size		Knowr	1	Unknown				
rioposai size	PQ	SQ	RQ	PQ	SQ	RQ		
Large	37.7	77.5	46.4	13.5	78.1	17.3		
Medium	37.7	77.5	46.4	12.5	74.8	16.7		
Small	37.6	76.7	46.3	0.3	64.1	0.4		
Large + Medium	37.7	76.8	46.3	17.9	76.8	23.3		
Large + Medium + Small	37.8	77.1	46.6	6.9	69.8	9.9		

• The number of clusters and clustering interval on COCO val set (K = 10%)

The number of clusters	Known			Unknown			Clustering interval	Known			Unknown		
	PQ	SQ	RQ	PQ	SQ	RQ		PQ	SQ	RQ	PQ	SQ	RQ
64	37.3	76.2	45.8	12.9	76.5	16.8	100 .	37.6	77.2	46.3	8.2	77.5	10.6
128 (ours)	37.7	76.8	46.3	17.9	76.8	23.3	200 (ours)	37.7	76.8	46.3	17.9	76.8	23.3
256	37.2	76.8	45.7	12.6	78.8	16.0	400	37.7	77.5	46.3	14.6	76.4	19.1

Exemplars in an Identified Unknown Class by First Clustering

• Most exemplars represent *car*.

Qualitative Results on COCO val set (K=10%)

• Orange color presents unknown classes

Limitations

- EOPSN mainly focuses on recognition.
- EOPSN cannot deal with unseen unknown classes.
 - However, as we collect more data, the number of seen unknown classes will grow rapidly.
- We employ existing metrics that have limitations in OPS.
 - A new metric should be defined for OPS.
 - One possible way is to modify SQ by properly considering false positive of unknown classes.

Conclusion

- We propose a novel task, open-set panoptic segmentation.
- We also propose a novel framework for the task called EOPSN that
 - is based on top-down panoptic segmentation network, Panoptic FPN.
 - finds unknown classes with exemplars by clustering.
 - collects more exemplars by comparing found exemplars and object proposals in the mini-batch.
- Several limitations still remain.
 - We hope that this work draw community's attention on open-set problem in many other areas.

Thank You!

Questions?