

Grid Cell-Inspired Fragmentation and Recall for Efficient Map Building

Jaedong Hwang

Zhang-Wei Hong

Eric Chen

Akhilan Boopathy

Pulkit Agrawal

Ila Fiete

Grid Cell in Entorhinal Cortex

Carpenter et al. (2015)

Fragmentation and Recall Framework for Map Building (FARMap) inspired by Grid Cell in the Brain

Fragmentation

- lacktriangle If surprisal is too **high**, $(s_t \mu_t)/\sigma_t >
 ho$
- Store the current local map in LTM.
- Initialize a new map in STM.

☐ Fragmentation and Recall based Spatial Map Building (FARMap)

- Short-Term Memory (STM)
- Local predictive spatial map, $\mathbf{M}_t^{\mathrm{cur}} \in \mathbb{R}^{(C+1) \times H \times W}$ is updated as with temporal decaying:

$$\mathbf{M}_{t,C}^{\text{cur}} = \gamma \cdot \mathbf{M}_{t-1,C}^{\text{cur}} + (1 - \gamma) \cdot o_{t,C}'$$

■ Surprisal S_t : 1 – similarity between the predicted map and the current observation.

$$c_t = \frac{\mathbf{M}_{t-1,C}^{\text{cur}} \cdot o'_{t,C}}{||o'_{t,C}||_1}$$

- Recall
- If current location = fracture point (previously fragmented location)
- Recall the corresponding map from LTM.

Long-Term Memory (LTM)

- Storing currently unused model fragments building connectivity graph.
- lacktriangle Each node records discovery ratio $\,q_i$ (# frontiers / # seen cells) and distance to others.

$$g = \arg\max_{i} \frac{q_i}{d_{i,c} + \epsilon}$$

Subgoal

- **LTM subgoal:** stored map is less explored than the current one.
- ⇒ go to the corresponding fracture point and recall the map.
- STM subgoal: o.w., go to frontier in the current map similar to Yamauchi [4].

☐ Comparison with Grid Cell Remapping

☐ FARMap in Procedurally-Generated Env.

☐ Active Neural SLAM [2] on Habitat Simulator

Model	% Cov.	Cov. (m^2)
Neural SLAM (Chaplot et al., 2020)	0.818	64.795
Neural SLAM w/o global policy + Frontier	0.733	58.103
Neural SLAM w/o global policy + FARMap	0.833	66.012