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Deep Learning has evolved with Larger Data and Deeper Models
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Training from Scratch vs. Transfer Learning
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Various Adaptation to the New (Downstream) Dataset

Bahng, Hyojin, et al. "Exploring visual prompts for adapting large-scale models." arXiv preprint arXiv:2203.17274 (2022).
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Low-Rank Adaptation (LoRA)

Hu, Edward J., et al. "LoRA: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021)
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Model Coverage is Changing in Fine-Tuning
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Catastrophic Forgetting in Transfer Learning / Continual Learning

• Catastrophic Forgetting
▪ When we learn a new task, we severely forget the previous task.

• Machine Learning is transudative learning.
▪ Meaning that it depends on the data distribution.

Kolouri, Soheil, et al. "Attention-based selective plasticity." arXiv preprint arXiv:1903.06070 (2019).
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Pre-Trained
Model

Robustness

• How much we can maintain the performance on out-of-distribution samples.

Out-of-Distribution
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Robust Fine-Tuning

• Aims to maintain / improve robustness to OOD data while in fine-tuning
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Existing Robust Fine-Tuning Benchmark (Taori et al., 2020)

• Fine-Tuning Pre-Trained model on ImageNet and evaluating on 5 Realistic ImageNet variants

Evaluation

Taori, Rohan, et al. "Measuring robustness to natural distribution shifts in image classification." NeurIPS. 2020

Fine-Tuning
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Problem of Robust Fine-Tuning Benchmark (Taori et al. 2020)

• Some pre-training datasets may contain downstream dataset, ImageNet.

• Fine-tuning on only one dataset.

• No study regarding relationship between downstream dataset and OOD dataset.

Taori, Rohan, et al. "Measuring robustness to natural distribution shifts in image classification." NeurIPS. 2020
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ImageNet-RIB (Robustness Improvement Benchmark)

2. Fine-tune on the downstream dataset

3. Evaluate on other OOD datasets
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Dataset Distance can Estimate Performance Drop in Pre-Train Dataset

• Measure Performance in ImageNet-1K after fine-tuning on each downstream dataset.

• The performance algins with Optimal Transport Dataset Distance (Alvarez-Melis and Fusi, 2020)

▪ Measured in feature space of pre-trained models.

Alvarez-Melis, David, and Fusi, Nicolo. "Geometric dataset distances via optimal transport." NeurIPS. 2020
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OT Distance Matches with Semantic Different

Alvarez-Melis, David, and Fusi, Nicolo. "Geometric dataset distances via optimal transport." NeurIPS. 2020

• Distance is measured using extracted feature from ImageNet pre-trained ViT-B/16

ObjectNet

ImageNet-R

ImageNet-Sketch
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Methods

• Fine-Tuning

▪ (Vanilla) Fine-Tuning, Linear Probing, Visual Prompting, LoRA

• Regularization-Based Continual Learning

▪ EWC, LwF

• Robust Fine-Tuning

▪ WiSE-FT, LPFT

• Model Soup

▪ Average multiple weights.
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Regularization-Based Continual Learning

• EWC (Elastic Weight Consolidation)

▪ Weight Regularization with pre-trained model’s weight

• LwF (Learning without Forgetting)

▪ Logit Distillation with pre-trained model’s logit

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS. 2017.

Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI. 2017,

Wang, Liyuan, et al. "A comprehensive survey of continual learning: Theory, method and application." arXiv preprint arXiv:2302.00487 (2023).
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Robust Fine-Tuning Methods

• WiSE-FT
▪ Linearly interpolate pre-trained and 

fine-tuned models.

Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models.” CVPR. 2022

Kumar, Ananya, et al. "Fine-tuning can distort pretrained features and underperform out-of-distribution." ICLR. 2022

• LP-FT
▪ Linear Probing first
▪ Then, Fine-Tuning
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Combination of Continual Learning and Weight Interpolation Helps

• Metric: Robust Improvement 

• Mean robustness Improvement across various pre-trained dataset

• WiSE-FT: Weight Interpolation of Pre-trained model and FT
• MS: Model Soup. Weight Interpolation of Pre-trained model, FT, EWC, LwF

Every pre-trained model was fine-tuned on ImageNet-1K before conducting experiments.

average accuracy difference
on OOD datasets
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• ViT-B/16 with different backbone

• All Models are pre-trained on IN-1K before fine-tuning on downstream datasets 

Surprisingly, Pre-Trained on Large-Scale Data Suffers more Forgetting
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Combination of Continual Learning and Weight Interpolation Relax this Issue

• Continual learning methods with post-hoc robust fine-tuning methods can relax the problem

• However, it is not a fundamental solution.
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Hypothesis of Performance Degradation

• Overfitting

▪ Pre-trained on larger dataset leads better OOD generalization before fine-tuning.

• Texture

▪ Models fine-tuned on ImageNet-1K had good generalizability in Taori et al. (2020)

▪ Downstream datasets in ImageNet-RIB have various styles, e.g., cartoon, drawing, and sketch.

• Dataset Size

▪ ImageNet-1K has 1.2M images while downstream datasets have 50K images in general
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Severe Catastrophic Forgetting Happens before Overfitting

• Measure accuracy on the downstream datasets and OOD datasets during fine-tuning.

• IN-21K with AugReg pre-trained model learns the fastest and OpenAI pre-trained model learns slowest.

• But only OpenAI and LAION-2B pre-trained model suffers huge robustness drop. 
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Downstream Dataset Texture Does Not Account for Forgetting

• Considering good robustness of LAION-2B CLIP fine-tuned on ImageNet-1K train set, downstream 
style may be the cause.

• Fine-tuning pre-trained model on ImageNet-1K validation set also leads to the severe forgetting.
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Downstream Dataset Size is a Major Determinant

• Fine-tuning LAION-2B pre-trained CLIP (without fine-tuning on ImageNet-1K) 
with zero-shot classifier on portion of ImageNet-1K train set.

Pre-trained model’s 
performance
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Downstream Dataset Size is a Major Determinant

• Fine-tuning on K-images / class in downstream dataset.

• IN-1K / 21K pre-trained models drop performance on downstream dataset shortly and recover.

• LAION-2B / OpenAI pre-trained models suffer huge forgetting even in 1-shot.

Pre-Trained Model’s
Accuracy
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Conclusion

• Propose a new robustness fine-tuning benchmark for understanding the impact of down

stream datasets.

 Model Soup has the best mRI with ImageNet pre-trained model.

 Linear Probing has the best mRI with LAION-2B pre-trained model.

• Pre-train on large dataset and then fine-tune on small dataset leads huge catastrophic fo

rgetting.

 Full Fine-Tuning is required when the downstream dataset is far from pre-training dataset.

 It challenges the common belief that pre-trained on the largest dataset is always better.

• Question remains whether this problem happens in other domains.
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Thank You!

Jaedong Hwang
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Fang et al. (2020)
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