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Deep Learning has evolved with Larger Data and Deeper Models
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Training from Scratch vs. Transfer Learning
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Various Adaptation to the New (Downstream) Dataset

Pre-training Adapting to New Tasks [] Adapted

(a) Fine-tuning (b) Linear Probe
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Bahng, Hyojin, et al. "Exploring visual prompts for adapting large-scale models." arXiv preprint arXiv:2203.17274 (2022).
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Low-Rank Adaptation (LoRA)
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Hu, Edward J., et al. "LoRA: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021)
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Model Coverage is Changing in Fine-Tuning
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Catastrophic Forgetting in Transfer Learning / Continual Learning

e (Catastrophic Forgetting
" When we learn a new task, we severely forget the previous task.

 Machine Learning is transudative learning.
" Meaning that it depends on the data distribution.

Learning Task 2

o
co )

'
'
'
1
'
'
'
1
'
\
\
\
.

\ o (
*‘\. O \
~ o

\\ o

'
'

Decision Boundary § Updated Decision Boundary | | Updated Decision Boundary
f(x;85) =0 i ¢ f(x6,) =0 ¥ 4 f(x;0,) =0
Catastrophic Forgetting Ideal Case

Kolouri, Soheil, et al. "Attention-based selective plasticity." arXiv preprint arXiv:1903.06070 (2019).
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Robustness

e How much we can maintain the performance on out-of-distribution samples.

Out-of-Distribution
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Robust Fine-Tuning

e Aims to maintain / improve robustness to OOD data while in fine-tuning
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Existing Robust Fine-Tuning Benchmark (Taori et al., 2020)

* Fine-Tuning Pre-Trained model on ImageNet and evaluating on 5 Realistic ImageNet variants

Fine-Tuning

Pre-Trained Model Fine-Tuned Model
(e.g., CLIP)

Evaluation

ImageNet-V2  ImageNet-A ImageNet-R  ImageNet-Sketc  ObjectNet

Taori, Rohan, et al. "Measuring robustness to natural distribution shifts in image classification." NeurlPS. 2020
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Problem of Robust Fine-Tuning Benchmark (Taori et al. 2020)

Fine-Tuning

Pre-Trained Model Fine-Tuned Model

ImageNet-V2 ImageNet-A ImageNet-R ImageNet-Sketch ObjectNet

* Some pre-training datasets may contain downstream dataset, ImageNet.

* Fine-tuning on only one dataset.

* No study regarding relationship between downstream dataset and OOD dataset.

Taori, Rohan, et al. "Measuring robustness to natural distribution shifts in image classification." NeurlPS. 2020
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ImageNet-RIB (Robustness Improvement Benchmark)

1. Choose one dataset 2. Fine-tune on the downstream dataset
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Dataset Distance can Estimate Performance Drop in Pre-Train Dataset

 Measure Performance in ImageNet-1K after fine-tuning on each downstream dataset.

* The performance algins with Optimal Transport Dataset Distance (aivarez-Melis and Fusi, 2020)

® Measured in feature space of pre-trained models.
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Alvarez-Melis, David, and Fusi, Nicolo. "Geometric dataset distances via optimal transport.” NeurlPS. 2020
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OT Distance Matches with Semantic Different

* Distance is measured using extracted feature from ImageNet pre-trained ViT-B/16

Pre-Trained Model Features
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Alvarez-Melis, David, and Fusi, Nicolo. "Geometric dataset distances via optimal transport.” NeurlPS. 2020
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* Fine-Tuning

®  (Vanilla) Fine-Tuning, Linear Probing, Visual Prompting, LoRA
 Regularization-Based Continual Learning

" EWC, LwF
* Robust Fine-Tuning

" WISE-FT, LPFT

 Model Soup

" Average multiple weights.
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Regularization-Based Continual Learning

[O O Oj 3 Gradient Projection

X
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MetaLearning e

 EWC (Elastic Weight Consolidation)

Inner Loop

" Weight Regularization with pre-trained model’s weight

* LwrF (Learning without Forgetting)

" Logit Distillation with pre-trained model’s logit

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS. 2017.
Li, Zhizhong, and Derek Hoiem. "Learning without forgetting.” TPAMI. 2017,
Wang, Liyuan, et al. "A comprehensive survey of continual learning: Theory, method and application." arXiv preprint arXiv:2302.00487 (2023).
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Robust Fine-Tuning Methods

WISE-FT

" Linearly interpolate pre-trained and

fine-tuned models.

Schematic: our method, WISE-FT leads to
better accuracy on the distribution shifts without
decreasing accuracy on the reference distribution
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Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models.” CVPR. 2022

Kumar, Ananya, et al. "Fine-tuning can distort pretrained features and underperform out-of-distribution." ICLR. 2022
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Combination of Continual Learning and Weight Interpolation Helps

* Metric: Robust Improvement

1 G A6) 1 ~average accuracy difference
BE= a1 2. AV - AR mRI= n ZRI@ on OOD datasets

j=1,j#i

* Mean robustness Improvement across various pre-trained dataset

Architecture ViT-B/16
IN-IK IN-2TK

Method IN-1K  + AugReg IN-21K + AugReg OpenAl LAION-2B
FT -6.9 1.3 -0.1 -5.5 -38.0 -38.1
Linear Probing 0.4 0.7 0.4 -0.3 -2.0 -2.0
Visual Prompt -1.5 -4.5 -9.4 -8.8 -8.4 -8.2
LoRA 0.5 0.9 -0.3 -2.1 -3.6 -3.6
EWC 0.1 2.8 1.4 0.6 -12.7 -12.5
LwF -3.6 3.1 1.6 -1.0 -33.1 -33.9
LP-FT -5.8 2.3 0.5 -2.6 -36.9 -37.1
WiSE-FT 1.5 3.6 2.5 1.7 -18.1 -21.6
MS 1.4 g 2.7 2.2 -16.0 -17.9

« WISE-FT: Weight Interpolation of Pre-trained model and FT
« MS: Model Soup. Weight Interpolation of Pre-trained model, FT, EWC, LwF

Every pre-trained model was fine-tuned on ImageNet-1K before conducting experiments.
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Surprisingly, Pre-Trained on Large-Scale Data Suffers more Forgetting

* ViT-B/16 with different backbone

* All Models are pre-trained on IN-1K before fine-tuning on downstream datasets
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Combination of Continual Learning and Weight Interpolation Relax this Issue

e Continual learning methods with post-hoc robust fine-tuning methods can relax the problem

* However, it is not a fundamental solution.
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Hypothesis of Performance Degradation

* Overfitting

= Pre-trained on larger dataset leads better OOD generalization before fine-tuning.

e Texture

= Models fine-tuned on ImageNet-1K had good generalizability in Taori et al. (2020)

= Downstream datasets in ImageNet-RIB have various styles, e.g., cartoon, drawing, and sketch.

e Dataset Size

= |mageNet-1K has 1.2M images while downstream datasets have 50K images in general
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Severe Catastrophic Forgetting Happens before Overfitting

 Measure accuracy on the downstream datasets and OOD datasets during fine-tuning.
* IN-21K with AugReg pre-trained model learns the fastest and OpenAl pre-trained model learns slowest.

 But only OpenAl and LAION-2B pre-trained model suffers huge robustness drop.
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Downstream Dataset Texture Does Not Account for Forgetting

e Considering good robustness of LAION-2B CLIP fine-tuned on ImageNet-1K train set, downstream
style may be the cause.

* Fine-tuning pre-trained model on ImageNet-1K validation set also leads to the severe forgetting.

IN-1K

Pre-Training Dataset | ‘ IN-V2 IN-A IN-R IN-Sketch ObjNet | IN-Cartoon IN-Drawing IN-C
IN-1K + AugReg 97.5(+18.3) | 66.9 (+0.4) 233(+8.3) 40.9(+2.9) 295(+1.5) 372(H#42) | 71.1(+4.9) 41.0(+1.9) 59.5(+3.5)
IN-1K + SAM 873 (+7.1) | 694 (+1.2) 17.7(+8.7) 41.8(+1.7) 30.1(+24) 38(+3.8) | 72.1(+5.2) 429 (+0.6) 56.9 (+2.3)
IN-21K 94.7 (+12.9) | 71.6 (+0.2) 38.5(+6.5) 49.9(+2.6) 36.7(+0.9) 452(+2.7) | 73.9(+4.5) 44.1(0.0) 59.8 (+1.5)
IN-21K-P 96.9 (+12.6) | 73.0(-1.0) 41.4(+7.3) 515(0.0)0 39.8(-04) 458(-09) | 76.4(+2.9) 443(-0.8) 61.7(+0.3)
IN-21K + AugReg | 999 (+15.4) | 70.6 (-34) 422(-10) 54.1(-27) 394(-3.8) 479(-05) | 845(+9.4) 555(+0.6) 69.7 (+3.2)
OpenAl 999 (+14.6) | 599 (-15.8) 13.9(-33.4) 349(-31.0) 19.7(-31.2) 30.5(-20.2) | 75.0(-1.3) 33.4(-22.3) 45.7(-16.9)
LAION-2B 999 (+14.4) | 594 (-16.2) 12.6(-28.9) 36.3(-32.5) 23.4(-32.0) 304 (-20.7) | 73.0(-5.2) 30.6(-27.8) 41.8(-21.2)

ImageNet-RIB
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Downstream Dataset Size is a Major Determinant

* Fine-tuning LAION-2B pre-trained CLIP (without fine-tuning on ImageNet-1K)
with zero-shot classifier on portion of ImageNet-1K train set.
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Downstream Dataset Size is a Major Determinant

* Fine-tuning on K-images / class in downstream dataset.
* IN-1K / 21K pre-trained models drop performance on downstream dataset shortly and recover.

* LAION-2B / OpenAl pre-trained models suffer huge forgetting even in 1-shot.

== |MN-1K + AugReg == Openal == Dpendl (Zero-5hot Classifier) == LAION-2B (Zero-Shot Classifier)
—il— [N-21K 4 AugReg  —@=— LAION-ZBE  —@=— LAION-400M (Zero-Shot Classifier)
70 70
60
>_Pre—Trained Model’s
= 307 z Accuracy
e e
2 2
2 404 2
o
E o
i O
= 30 4 a
on
= g
B g
= 204 <

10+

1 2 5 10 20 1 2 5 10 20
The Number of Samples per Class The MNumber of Samples per Class

ImageNet-RIB Voxel51 Boston Al, ML and Computer Vision Meetup



Conclusion

* Propose a new robustness fine-tuning benchmark for understanding the impact of down
stream datasets.

@® Model Soup has the best mRI with ImageNet pre-trained model.

@ Linear Probing has the best mR/ with LAION-2B pre-trained model.

* Pre-train on large dataset and then fine-tune on small dataset leads huge catastrophic fo
rgetting.
O Full Fine-Tuning is required when the downstream dataset is far from pre-training dataset.

@ It challenges the common belief that pre-trained on the largest dataset is always better.

e Question remains whether this problem happens in other domains.
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Thank You!

lla Fiete

Zhang-Wei Hong Brian Cheung Pulkit Agrawal

Contact: jdhwang@mit.edu
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Fang et al. (2020)

e CLIP’s robustness is related to pre-training data distribution not contrastive loss.
e Models pre-trained with various contrastive objectives on ImageNet do not achieve
the same effective robustness as CLIP models

Robustness under distribution shift

|
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Figure 6. Effect of prompting strategies and contrastive objectives on robustness. (Left) On most natural distribution shifts, effect of
prompting on effective robustness is similar to that of random interpolation. (Right) Models pre-trained with various contrastive objectives
on ImageNet do not achieve the same effective robustness as CLIP models.

Fang, Alex, et al. "Data determines distributional robustness in contrastive language image pre-training (clip)." ICML 2022
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